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A statistical thermodynamic treatment is made on the problem of the order-disorder transition of metal 
vacancies in the V-S system. The total free energy (G) for the crystal with interacting defects is expressed 
after Libowitz and Lightstone based on the Bragg-Williams approximation. From the calculation, two 
types of transitions are derived corresponding to V,S,+4,S, (at Tc,) and V&+CdI, (at Tc,) and they 
are of second order, which is consistent with our previous experimental work. The calculated phase 
diagram is compared with the experimental one for the V-S system and also for the V-Se system. 
Equilibrium sulfur vapor pressure is also calculated from the total free energy (G) and the results are 
compared with the experimental data of Wakihara, Uchida, and Taniguchi (Mater. Res. Bull. 11, 973 
(1976)). 

1. Introduction 

On the nature of point defects (random 
distribution) in inorganic compounds, many 
thermodynamic treatments have been made 
from which we can deduce the stability range 
and the equilibrium vapor pressure of nonstoi- 
chiometric compounds. In the case of non- 
interacting point defects (low concentration 
of defects), the treatment is very simple as was 
shown by Libowitz (I). With an increasing 
number of defects, the interaction between 
defects must be taken into consideration. The 
most simplified treatment on the interaction 
energy between defects has been made by 
Lightstone and Libowitz (L and L) (2), by use 
of the Bragg-Williams approximation which 
has been recognized to be successful for the 
order-disorder transition of alloys. For the 
problems on ordered structures of point 
defects, few papers have been published so far. 

Koiwa and Hirabayashi (3) have studied the 
order-disorder transformation of oxygen 
atoms in the Ti-0 system, in which oxygen 
atoms dissolve interstitially in an alpha- 
titanium matrix. They expressed the free energy 
for this system in terms of the pairwise inter- 
action energies between oxygen atoms and the 
configurational entropy of interstitial oxygen 
atoms on the basis of the Bragg-Williams 
approximation. But their expression does not 
give the total free energy of the system, 
which will be shown later. L and L (2) 
derived theoretically the relation between the 
concentration of defects and the activity of the 
volatile elements in the nonstoichiometric 
compounds, assuming that one type of point 
defect was predominant. They used the Bragg- 
Williams approximation for the system with 
interacting point defects. Their expression of 
the free energy consists of four sets of terms, 
i.e., the free energy of the ideal perfect crystal . 41 0022-4596/78/0241-0041§02.00/0 
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from which the real crystal is derived, the free 
energy change for introducing the point 
defects, the free energy of interaction between 
the point defects, and the configurational 
entropy. The total free energy gives the 
absolute values of the free energy of the 
system over the whole range of composition. 

In the previous paper (4), the present 
authors have clarified experimentally the 
order-disorder transitions of the metal vacan- 
cies in the V-S and V-Se system. In these 
systems, the vacancy-ordered V,S,-type trans- 
forms into the vacancy-ordered V&-type 
structure at Tc,, which can be regarded as the 
disordering of the V&-type structure, and 
finally into the nonstoichiometric CdI,-type 
structure (intralayer disorder) at Tc,. This 
paper presents the statistical thermodynamic 
treatment of the V-S and V-Se systems, by 
making use of the modified free energy expres- 
sion proposed by L and L. 

2. Model and Free Energy 

2.1 Model 
In the pseudobinary VS-VS, system, four 

phases appear with increasing temperature or 
sulfur content, i.e., NiAs, V,S,, V,S,, and CdI,- 
type structures (5-7). For example, the 
sample VS.,, shows the following trans- 
formations with increasing temperature; V,S,- 
type ‘2 V,S,-type TC, + Cd&-type 1 (NiAs-type). 
The transformations at Tc, and Tc, may be 
second order. At room temperature, the 
samples quenched from 800°C show succes- 
sive phase transition VS-type (NiAs) + 
W,-type + V&-type --) CdI,-type with 
increasing sulfur content (5). We mention here 
the structure model, which includes all the 
structures appearing in the V-S system. 

The V&type structure can be taken as a 
basic structure. The structure of the V,S,- 
type is shown in Fig. 1 (8, 9), where sulfur 
atoms are omitted for simplicity. The char- 
acteristic of the structure is the alternate 
stacking of a partially occupied metal layer 
and a fully occupied one along the c-axis. 

0 A site, Q) Bsite,OCsite,mDsite 

FIG. 1. Crystal structure of the V&type. For simplicity 
only metal sites are shown, which are classified into four 
kinds, i.e., A, B, C, and D sites. E, is the nearest- 
neighbor interaction energy of vacancy pairs in a metal 
layer, i.e., A-B, B-C, C-A, and C-C pairs, and A-B 
pair is shown in the figure for an example. E, is the 
second-nearest-neighbor one, i.e., A-B, B-C, C-A, and 
C-C pairs. E’ is the interaction energy between 
vacancies in alternate layers through D site, i.e., A-C 
and EC pairs. It is to be noted that the interaction 
energy depends only on the distance between vacancies. 

The sites of metal atoms can be classified 
into four sublattice sites A, B, C, and D, as 
shown in Fig. 1.’ When the occupation prob- 
abilities for A, B, C, and D sites are expressed 
by a, b, c, and d, respectively, each structure 
type with the stoichiometric composition at 
0% can be defined as follows: 

Type 
a=b=c=d=l NiAs (w00) 
a=b=c=O,d= 1 CdI, wLlcl) 
a=b= l,c=O,d= 1 V,S, o%.,J 
a=l,b=c=O,d= 1 V,S, 0%0) 

i Strictly speaking, the D site should be classified 
crystallographically into two kinds of sites, D, and D,. 
Along the direction of the c-axis the D, site has A and C 
sites as the nearest neighbors, and the D, site has B 
and C sites. This classification is the same as the 
result of the NMR study (10, II), i.e., D, site cor- 
responds to site II and D, site to site III in Ref. (10). 
Our calculation is based on the assumption that a fully 
occupied layer is uniform and has no vacancy. The 
assumption is justified by the fact that a recent study 
on the determination of the crystal structure V,S, by 
Kawada et al. (9) revealed that a fully occupied layer 
has no vacancy within experimental error. 
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For nonstoichiometric composition or at finite 
temperature, the above mentioned relations 
have to be altered as follows: 

Type 
a=b=c=d< 1 NiAs 
a=b=c< 1,dzl CdI, 
a=b>c,dyl VA 
a>bZc,dzl V&i 

The structural transformations in the V-S 
system can be realized by the temperature or 
composition dependence of the occupation 
probabilities a, b, c, and d. For example, the 
transition from the V&type to the V&-type 
structure corresponds to the change from 
a > b 2 c to a = b > c, and the transition from 
the V,S,-type to the Cd&-type corresponds 
to that from a = b > c to a= b = c. In the 
following section, the total free energy of the 
system will be calculated on the basis of this 
model. 

2.2 Free Energy 

In order to discuss the nature of the phase 
transition, it is necessary to give the total free 
energy (G) of the system. The present treat- 
ment is based on the calculation of free energy 
proposed by L and L (2). 

The total free energy may be written as 

G=G(N,N,,N,,N,,N,,N,), 
where N is the number of metal sites (equal to 
the number of anion sites in this case), Ns is 
the number of sulfur atoms, NA, N,,, Nc, and 
Nn are the number of metal atoms on A, B, 
C, and D sites, respectively. From the defini- 
tion of metal sites, the number of A, B, C, 
and D sites is iN, #, ;SN, and jN, respectively. 
Accordingly, the occupation probabilities a, b, 
c, and d can be given as follows; 

a = NJNl8, b = N,/N/8, c = NC/N14 
and d = N,jN/2. 

For simplicity, we make a plausible assump- 
tion that there is no vacancy in the fully 
occupied layer, i.e., ND = N/2, because our 
treatment is centered on the intruluyer struc- 
tural transformation. 

We here outline the basic framework of the 
constituents of the total free energy (G) after 
L and L. We start from the ideal crystal 
VS,.,, (without imperfection). The real crystal 
is derived by introducing vacancies into this 
ideal crystal. The expression of the total free 
energy consists of four sets of terms: 

(i) Free energy of the ideal crystal N,~vs, 
(ii) Free energy change for introducing 

vacancies. 
(iii) Free energy of interaction between 

vacancies. The interaction energy was calcul- 
ated by use of the Bragg-Williams approxima- 
tion. As for metal vacancies, the interaction 
energy between vacancy-vacancy and metal- 
vacancy must be taken into consideration in 
principle. As will be discussed in Section 4, 
it can be proved that the expression including 
only vacancy-vacancy interaction gives the 
same result on the nature of the phase transi- 
tion as the expression including vacancy- 
vacancy and metal-vacancy interaction does. 
In this paper, only the interaction energy 
between vacancy-vacancy (see Fig. 1) is taken 
into consideration for simplicity. It is to, be 
noted that the interaction energy between 
metal-metal is included in the term Npvs. 

(iv) Configurational entropy of vanadium 
atoms and sulfur atoms. 

The total free energy is given as follows; 

G = NP,, + W - N&s 

g, 

+ I,(-N,)* 
2 N L 

+[$-NA){2&NB)/; 

+4(;-NC)/;}+;&NB) 



44 OKA, KOSUGE, AND KACHI 

+;($-NJ{2(&N*)/; 

+ &NJ/$+ 2&N,)/ 

the array of metal sites in the same layer is 
slightly distorted from the ideal hexagonal. In 
this paper, the calculation was made on the 
assumption that every metal site is surrounded 
by six metal sites in the regular hexagonal 
array. 

Equation (1) can be reduced to the following 
expression: N 

4 11 6% + 4) 
+[(p*)(+)~ 

G = Nclvs 

+ W - N&g, 

+&N&Nc),;+;&Nc) 

+ ‘SW- NJ* 
2 N rs 

+ :-N,-N,-N, ( ) g, 

N! 

+ kT1n (N - N,)!N,! 

(1) 

where g, and g, are the vacancy formation 
energies for sulfur and vanadium atoms, respec 
tively. 5;; is the interaction energy between 
sulfur vacancies; zs is the coordination 
number of sulfur atoms. E, is ‘the nearest- 
neighbor interaction energy of vanadium 
vacancy pairs in a metal layer, i.e., A-B, B-C, 
C-A, and C-C pairs, and E, is the second- 
nearest-neighbor one of vacancy pairs, i.e., 
A-B, B-C, C-A, and C-C pairs. E' is the 
interlayer interaction energy of vacancy pairs 
through D site, i.e., A-C and B-C pairs (see 
Fig. 1). In the real crystal of the V&type, 

N 
+ 

{ 
?-2(N,, + NB + NC) 

+ ;&WA + NB) t; 

+kT (N-Ns)ln(N-NJ 
1 

+ NslnNs+(r-N,) In c--N*) 

+ NAlnN, (p-NB) In (f-NB) 

-* 1 L -. 

+ NBlnN, +(T-Nc) In E-N) 

+NclnNc-2 NlnN+ i Nln2 

where Z.., = E. + E, and E, = E'. 
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2.3. Chemical Equilibrium 
At chemical equilibrium, the following con- 

dition has to hold: 

(WiNI N,, NA, NB, NC = 0. (3) 

Therefore: 

+(-2+ %)c: 

+kT{lnN*-ln(z-NA)}, (6) 

i- { ; - -$ (4N, NB + 4N,N, + 4N,N, 

MN-N,) 

+$ In c--N*) +f In c-NB) 

-iNln, 

+i Nln2 = 0. (4) 

The chemical potentials of every site can be 
given as the derivative of the total free energy 
G. We have: 

8G 
Ps = aN, 

= -g, - 2s 

lnN,-ln(N-NJ (5) 

-6+;(N,+N,) 5; 

+kT{lnN.-lnc-NB)}, (7) 

= -g,+ -6+$ZN,+2N,+N,) tv 

where ps is the chemical potential of sulfur 
atoms and &, &, and & are the chemical 
potentials of vanadium atoms on A, B, and C 
sites, respectively. 

From the internal equilibrium condition, we 
have: 

&=p~=p~=ccv, (9) 

where pv is the chemical potential of vanadium 
atoms in the crystal. From Eq. (9) the follow- 
ing equations can be given: 

&-j&=0, (10) 

p;--&=O. (11) 
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Using Eqs. (6), (7), and (8), Eqs. (10) and (11) 
yield : 

+k,l,,&Vc)/ &NJ,=O. 

(13) 

We hereafter use the occupation probabilities 
a, b, and c instead of the number of vanadium 
atoms. Equations (12), and (13) lead to the 
following equations: 

2(c - a)& + (2c - a - b)& 

a(1 -c) 
+ kTln (1 _ a)c = 0, (14) 

2(c - b)& + (2c - a - b)r; 

+ kTln ‘(l-‘) 0 -=. 
(1 - b)c 

(15) 

These equations give the temperature and 
composition dependence of the occupation 
probabilities at equilibrium. Under the con- 
dition of fixed number of vanadium atoms, 
namely a + b + 2c = x (x: constant) and re- 
placing &, and kT with a& and t&, respect- 
ively, we get: 

(x - 3a - b) + a(x - 2a - 2b) 

a(2 -x + a + b) 
+ ’ In (1 - a)(x - a - b) = ” (16) 

b(2-x+a+b) 
+ t In (1 _ b)(x _ a - b) = ” (17) 

Under the assumption that the number of 
sulfur vacancies is negligible, the ratio of sulfur 
and vanadium atoms X in VS, may be 
expressed: 

N 
X= 

N 
2 + NA + NB + NC 

8 8 

= 4+a+b+2c =-* 4+x 
(18) 

By setting the values of a, t, and x, 
Eqs. (16) and (17) were solved numerically 
under the condition of the free energy mini- 
mum, using a computer (FACOM 23&75, 
Kyoto University). 

2.4. Equilibrium Sulfur Vapor Pressure 

The chemical potential of sulfur atoms in 
the solid is expressed in terms of the sulfur 
activity (us) by the following equation: 

R=kTlna S’ (19) 

At chemical equilibrium, ,+ is equal to that 
in the gas phase: 

.cls = Ls,k) = t&M + Win PSI, (20) 

where psz (g) is the chemical potential of sulfur 
molecules (S,), p\(g) is that in the standard 
state, and Ps, is the equilibrium sulfur vapor 
pressure. If we choose one atmosphere as the 
standard state of the sulfur vapor pressure, 
Ps, is given from Eq. (20): 

Ps, = f exp WW. (21) 

By eliminating g, from Eqs. (4) and (5), we 
obtain: 

3 4 
+ 2 - ,,(4N,N, + 4N,N, + 4N,N, 
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+ N;) 

+fln&N,,) +&NB) 

-flnN 

In our case, we can assume the number of 
sulfur vacancies (N - NJ is negligibly small. 
From Eq. (21), we have: 

3 4 
z - Iv2 (4NANB 

+ 4N, NC + 4Na NC + PC) tv 

1 8 
+ z-NzNc(N~+Ns) 

+kT{i In d--NA) 

-2 lnN+zlnZ . (23 

Substituting NA, NB, and NC by Q, b, and c, 
and e”, and kT by a& and t&, Eq. (22) 
becomes: 

P’s = Pvs + ;g, + 
3+a 
y- 

1 -- 
4 1 

ab + (2 + a)(a + b)c + c2 
> 

+ it In (1 -a)(1 -b)(l -c)’ 1 &,. (24) 

From Eqs. (21) and (24), we obtain: 

Ps2= Q(t)exp [i{ T -i{ab 

+ (2 + a)(a + b)c + c2 >> 

+i In(l-a)(l-b)(l-c)2 , 1 (25) 

where Q(t) = f exp@,, + &,)/t. 
It is therefore possible to compute the relation- 
ship among the equilibrium sulfur vapor 
pressure, temperature (t), and the composition, 
and to compare the derived relationship with 
experimental data. 

3. Results of the Numerical Calculation 

3.1. Phase Transition 

As an example, the temperature dependence 
of the equilibrium occupation probabilities a, 
b, and c for the composition of x = 1.0, i.e., 
VS L.60 or the stoichiometric composition of 
V,S, are shown in Fig. 2 by taking a as a 
variable. The characteristics of the transitions 
for this case should be classified into the 
following three cases. 

(1) There is no interaction between 
partially occupied layers, i.e., a= 0.0. The 
ordered structure of the V&type (a > b 2 c) 
directly transforms into the disordered struc- 
ture of the CdI,type (a = b = c) at the critical 
temperature Tc ,, and the occupation prob- 
abilities a, b, and c changes discontinuously 
at Tc,. 

(2) There is small interaction between 
the partially occupied layers, i.e., 0.0 < a < 
0.24. Only Tc, appears, but the transition 
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FIG. 2. (A) Occupation probabilities for the com- 
position VS,,, against temperature curves for the change 
of the value a, which is a ratio of the interlayer 
e! and the intralayer interaction energy <v. The 
probabilities a, b, and c are for A, B, and C sites in 
Fig. 1, respectively. Temperature is measured by 5;/k 
as the unit. Tc, and Tc, are the transition temperatures 
corresponding to the transitions of V,S, (or V,S,)++ 
CdI, and V,S,++V,S,. (B) Tc, and Tc, vs Q curves, 
derived from (A). 

may be of second order, since a, b, and c 
change continuously at Tc,. 

(3) There is larger interaction, i.e., 
oc > 0.24. The V&-type structure transforms 
into the V,S,-type (a = b > c) for the first 
step at the critical temperature Tc,. Then the 
successive transition from the V,S,-type to 
the CdI,-type occurs at Tc,. Both transitions 
may be of second order. 

1.0 1.2 1.4 1.6 1.8 S/" 

Thus the calculated phase diagram show an FIG. 3. Phase diagram of the V-S system determined 
interesting feature of the phase transition from the numerical calculation using Q = 0.30. 
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appearing in the V-S system. By comparing 
the calculated results with experimental ones 
for the sample V5&,,, it is confirmed that the 
third case is the most probable one. It is 
interesting to point out that the phase diagram 
of the V-S system can be explained only 
for the case cc > 0.24, i.e., the interaction 
energy between partially occupied layers has 
an important role in the phase transition of 
the V-S system. A similar calculation has 
been made for the whole composition range 
between VS and VS,. The results obtained are 
summarized as follows: 

(1) Tc, has a maximum value ai the 
stoichiometric composition (V,S,) and 
decreases with increase or decrease of sulfur 
content towards O°K. The value of Tc, 
increases with increasing cc. 

(2) Tc, has a maximum at the com- 
position slightly more vanadium-rich than 
stoichiometric V,S,, and the maximum value 
moves toward the sulfur-rich composition 
with increasing a. At the stoichiometric com- 
positions V,S, and VS,, Tc, becomes 0°K. 

(3) The interval between Tc, and Tc, 
increases with increasing a. The phase diagram 
computed with a = 0.30 is shown in Fig. 3. 

Here we make comparison between the 
calculated and experimental phase diagrams. 
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“C 

i i 
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FIG. 4. Calculated and observed phase diagram of 
the V-S system. Solid lines are the calculated Tc, and 
Tc, ,curves using & = 2340 K and a= 0.30. Broken 
lines are the observed ones from Ref. (4). The calculated 
curves are fitted to the observed ones at the com- 
position VS,,,,. 

Figure 4 shows a comparison of the calculated 
Tc, and Tc, values with experimental ones. 
The calculation was made by taking cc= 0.30 
and & = 2340 K (4.65 kcal/mole), which was 
obtained by fitting the experimental Tc, and 

1.0 

0.5 

-1.36 

a.b 

TCI 

0 LIZ!4 !J 

C 

0 a2 0.4 0.6 T 

(‘v/k) 

vsl.31 
1.0 

a,b 
TCI 

b 
a5 a c 

0 
0 0.2 0.4 0.6 T 

(["ik) 

FIG. 5. Occupation probabilities vs temperature 
curves for VS,,,, and V!!& using a= 0.30. Tc, 
indicates the transition temperature from the V&-type 
(a = b > c) to the CdI,-type (a = b = c). 

(A) 

1.3 1.4 1.5 1.6 s/,, 

I T=Od5b/k 1 

(61 

0.5 - 

1.3 1.4 1.5 1.6 S/L 

FIG. 6. Occupation probabilities vs composition 
curves for T = 0.30 &lk (A) and T= 0.45 TV/k (B) 
using a= 0.30. The curves for (A) show the transition 
from the V,S,-type (a = b) to the V&type (a > b) 
at the composition VS,,,2 and those for (B) show that 
the V,S, phase exists in the composition range from 
vs,,, to w,,. 

Tc, to the calculated ones at the composition 
VS1.W 

Next we consider “the order of the phase 
transition” from the viewpoint of the temp- 
erature and composition dependence of the 
occupation probabilities, and also from the 
free energy change. As mentioned above, the 
occupation probabilities a, b, and c for the 
composition VS,.,, show a continuous change 
with temperature ,through Tc, and Tc,, 
which suggests that the phase transitions at 
Tc, and Tc, are of second order. In Fig. 5, 
the temperature dependences of the occupation 
probabilities are shown for the compositions 
VSI.3, and VS1.36, both of which are of the 
V&-type structure at room temperature. In 
Fig. 6, the composition dependences of a, b, 
and c are shown at temperatures T = 0.30 
{v/K and T = 0.45 &/K. As seen from both 
figures, there is no discontinuous change in 
the temperature or composition vs a, b, and c 
curves. This again suggests that the phase 
transition is of second order. 
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These discussions can be strictly verified by 
a numerical calculation of the free energy 
change. Equation (2) can be rearranged as 
follows: 

G = G, + G,, (26) 

where 

+ 5(2 - x)(3& + CJ, (27) 

x=a+b+2c, 

+ kT{(N - NJ In (N - N,) 

+N,lnN,-NlnN}, (29) 

f(u,b,c) = 2{ab + 2(a + b)c + c’}& 

+ (a + b>cC + kT{u In a 

+(l-u)ln(l-u)+blnb 

+(l-b)ln(l-b)+2clnc 

+2(1-c)ln(l-c)}. (30) 

It is evident that the term G, depends only 
on the composition x, while the term G, 
depends on the occupation probabilties. There- 
fore in order to discuss the order of the phase 
transitions, it is enough to take only the term 
f(a,b,c) into consideration. Figure 7a shows 

b) 
f 

1.0 V. 

2.0 

FIG. 7. (a) Free energy f(a,b,c) in Eq. (28) for each 
type of crystal structure vs temperatlure curves for the 
composition VS,,,, and a = 0.30. At Tc, (0.462 &/k) 
and Tc, (0.488 &,/k), the phase transitions occur and 
the free energy curves touch each other with a common 
tangent, which shows the transitions to be of second 
order. The inset shows the detail of the curves near the 
transition temperatures schematically. (b) Free energy 

f(a,b,c) in Eq. (28) vs composition curves for the 
temperature T = 0.30 5,/k and a = 0.30. The transition 
point is indicated by the arrow. In the inset, the free 
energy change near the transition point is enlarged to 
show the transition to be of second order. 

the temperature dependence of f(u,b,c) for 
the composition VS,.,O with a= 0.30. At 
temperatures below Tc,, the free energy for 
the V&-type has the lowest energy, and at 
Tc, the curve touches that of the V,S,-type 
with a common tangent, which means that the 
phase transition from the V,S,-type to the 
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V&-type is of second order. In the temp- 
erature range from Tc, to Tc,, the free 
energy curve for the V,S,-type has the lowest 
energy, and at Tc, the curve touches that of 
the CdI,-type with a common tangent, which 
means that the phase transition from the 
V&-type to the CdI,-type is of second 
order. 

The composition dependence of the free 
energy f at T = 0.30 (v/K is shown in 
Fig. 7b. At the composition VS,,42, the curve 
for the V&-type touches that of the V&i,- 
type with a common tangent. This means that 
the V&,-type structure transforms into the 
W,-type at VL, and the phase transition is 
of second order. Thus we can conclude that 
the order-disorder transitions appearing in the 
VS-VS, system are of second order. These 
results are consistent with the discussion made 
by Haas (12). Based on the Landau theory 
of phase transitions, he confirmed that a 
second-order phase transition is possible in the 
phase transitions from the V&type to the 
V,S,-type and from the V,S,-type to the 
CdI,-type. 

The same treatment has also been made 
for the V-Se system which shows a behavior 
similar to that of the V-S system (4). This 

FIG. 8. Calculated and observed phase diagram of 
the V-Se system. Solid lines are the calculated Tc, 
and Tc, curves using cv = 2035OK and a=0.45. 
Broken lines are the observed ones from Ref. (4). The 
calculated curves are fitted to the observed ones at the 
composition VSe,,,,. 

system has slightly lower transition tempera- 
tures than the V-S system, which means that 
&, is smaller than that of the V-S system. 
Also the interval between Tc, and Tc, is 
larger than that of the V-S system, which 
means that cr is larger. As a result, for the 
V-Se system we take 2035“K or 4.04 kcal/ 
mole for & and 0.45 for a, deduced from the 
experimental transition temperatures at 
V%.60. In Fig. 8, are shown the calculated 
curves of Tc, and Tc, for the V-Se system 
and also the experimental curves. The agree- 
ment with the experimental curves is fairly 
good. 

3.2. Equilibrium Sulfur Vapor Pressure 

We tried to calculate the equilibrium sulfur 
vapor pressure Psz by Eq. (25), utilizing the 
numerical calculation of the occupation prob- 
abilities a, b, and c. The term Q(t) is unknown. 
Fortunately, Wakihara et al. (13) recently 
measured the Ps, for the composition range 
from VS1.33 to VS6,, at 8OOOC (13). From 
their data at the composition VS,.,,,, in the 
temperature range from 650 to 8OOOC (14), 
we get the temperature dependence of the value 
(,~v, + jgv) as shown in Fig. 9. (In this 
temperature range and low sulfur vapor 
pressures, S, species are predominant in the 
vapor (15,16).) 

kcal/mole 

I 1 a I . 
650 700 750 600 “C 

FIG. 9. ,uvs + gv vs temperature curve. The curve 
was obtained from Eq. (25) by combining the data of 
the temperature dependence of the occupation probabili- 
ties and vapor pressure (14) for VS,,,,,. 
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FIG. 10. Calculated and observed sulfur vapor 
pressure (PsJ vs composition curves in the V-S 
system at SdOT. A broken line (a) is the observed 
Ps, measured by Wakihara et al. (13) and a solid line 
(b) is the calculated Ps, obtained from Eq. (25) by 
fitting the experimental data at the composition KS,,,,,. 
A dotted line (c) is the recalculated PSI by using the 
composition-dependent values of <v in Section 4. 

To the first approximation, it is plausible 
that the value Q(t) does not depend on the 
composition. Figure 10 shows the calculated 
Ps, together with the data of Wakihara 
et al. at 800°C. The agreement between the 
calculated and experimental curves is not so 
satisfactory, especially in the region of high 
sulfur content near VS,.,,. But the tendency 
of the composition dependence of Ps, should 
be reproduced in spite of this simple treatment 
of the equilibrium vapor pressure and more 
improved calculated curve is given in the 
next section by assuming the composition 
dependence of the value &, 

4. Discussion 

As mentioned above, the statistical thermo- 
dynamic treatment after L and L based on 
the Bragg-Williams approximation shows- 

qualitative agreement with the experimental 
facts. 

In the case of the order-disorder transition 
for AB alloys, the pairwise interaction energies 
between A-A, A-B, and B-B have to be 
taken into consideration. In our case, therefore 
the interaction energies between metal-metal, 
metal-vacancy, and vacancy-vacancy have to 
be taken into consideration. According to L 
and L, the interaction energy between metal- 
metal is implicit in the term Npvs. By short 
calculation, the free energy expression (G’) 
including both metal-vacancy and vacancy- 
vacancy interactions can be obtained as 
follows: 

G’ = G; + G;, (31) 

G; =Mvs +f,W&) + (N/8)(4 -xl&, 

+ (N/4)(2 -x)(35; + <fr> 

+ W/4)x (34, + I:>, (32) 

G; = (N/S)f’(a,b,c), (33) 

f’(a,b,c)= 2[{ab + 2(a + b)c + C%, 

+ (a + b)cs:l 

+ kT{u In a + (1 - a) In (1 - a) 

+blnb+(l-b)ln(l-b) 

+ 2cln c + 2(1 -c) In (1 -cl, 

where #v is the intralayer metal-vacancy 
interaction energy and &, is the interlayer 
one, and E, = &, - 2#,, EL = ev - 24,. It is 
evident that the term G; depends only on the 
composition x, while the term G; depends on 
the occupation probabilities. Comparing with 
Eq. (26), the term G; is formally the same as 
the term G, in Eq. (20). Accordingly, it can be 
concluded that the free energy expression G 
gives the same result on the nature of the phase 
transition as does the expression G’. It is to 
be noticed that the expression for the chemical 
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potential ,us is correctly changed into the 
following relation: 

Ps= iuvs + ;g, + 
3+a 
y- 

1 
--{ub+(2+d)(u+b)e+e’ 

4 1 

+~tln(l-a)(I-b)(I-c)z s, 1 
+ (3 + a’)&, (34) 

where 

We mention here the relation between the 
treatment of Koiwa and Hirabayashi (3) and 
ours. Koiwa and Hirabayashi discussed the 
order-disorder transition of oxygen atoms in 
alpha-titanium (3). The free energy expression 
consists of the interaction energies between 
interstitial oxygen atoms and configurational 
entropy of oxygen atoms. According to the 
treatment of Koiwa and Hirabayashi, the free 
energy f, for our case is as follows: 

f, = 2[{ab + 2(a + b)c + c*je, 
+ (a + b&,1 + kT{a In a 
+(I--a)ln(l-u)+blnb 
+(l-b)ln(l-b)+2clnc 
+ 2(1 -c) In (1 -c), (35) 

where E, is the intralayer metal-metal inter- 
action energy and E’, is the interlayer one. 
It is interesting to note that f, is the same in 
form tofin Eq. (21) or f' in Eq. (33). To get 
the free energy minimum, the following con- 
ditions must be imposed: 

@ii o ai -=, -YE 
ab 

0 
&l 

(whereu + b(36j 
+ 2c=x: 
const), 

a!fi 
s >O, g >o, and 

From Eq. (36), the same equations to Eqs. (16) 
and (17) were obtained. Thus it is clarified 
that these two methods give the same result 
on the phase transition. However, the merit of 
the L and L method is in the following points: 

(i) The expression G gives the absolute 
value of the free energy. 

(ii) The equilibrium vapor pressure can be 
calculated straightforward from G. 

Our main purpose is to show that the phase 
diagram of VS-VS, system can be explained 
by simple statistical thermodynamics. In 
Section 3, it was confirmed that Eqs. (16) and 
(17) qualitatively explain the nature of the 
order-disorder phase transition appearing in 
the V-S system. In Eqs. (16) and (17), there 
are adjusting parameters which have to be 
chosen so as to realize the experimental facts 
as possible. In Section 3, the calculation was 
made by taking a= 0.30 and <v = 2340°K, 
which was obtained by fitting the values of 
the experimental Tc, and Tc, to the cal- 
culated ones at the composition VS,.,,. The 
results are in rough agreement with the experi- 
mental facts. In the calculation, the interaction 
energies &, and & are assumed to be constant 
over a wide composition range. This assump- 
tion seems not to be plausible. For example, 
we can choose the parameters & and &. so 
as to fit the values of the experimental Tc, 
and Tc, to calculated ones over the whole 
investigated composition range, i.e., <v and l; 
are dependent on temperature and composi- 
tion. The results are shown in Fig. 11. A 
similar discussion may be plausible for the 
composition dependence of the equilibrium 
sulfur vapor pressure at 800°C. By using the 
composition-dependent values of &, the Ps, 
in Eq. (25) was recalculated. Thus the recal- 
culated curve obtained in Fig. 10 is shown by 
the dotted line. As compared with the curve 
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FIG. 11. Composition dependence of the intralayer 
interaction energy &. The curve is obtained from 
the experimental data of the composition dependence of 
i”c, in Ref. (4). 

obtained by using the constant rv in 
Subsection 3.2, this curve is in better agree- 
ment with the experimental one in the region 
of high sulfur content near VS.,,. 

As for the values of ,~vs + $g,, (or ,+ + 
fs, + (3 + d)#, in Eq. (34)), it is impossible 
to estimate the vacancy formation energy g,, 
because the formation energy for the stoichio- 
metric VS is unknown (stoichiometric VS does 
not crystallize with the NiAs-type structure 
but the MnP-type (17)). But it is interesting 
to compare the data with those for the 
pyrrhotite FeS analyzed by Libowitz (18). For 
example, the values of pFeS + gVFe are 
-12.9 kcal/mole at 670°C and -9.5 kcal/ 
mole at 800°C, and in our case the values of 
pvs + $g, are -9.4 kcal/mole at 670°C and 
-8.3 kcal/mole at 800°C, as shown in 
Fig. 9. 

At higher temperatures, the phase transition 
from the CdI,-type to the NiAs-type may be 
expected to appear. But we could not derive 
the CdI,+-+NiAs transition from Eq. (l), 
because of the assumption that d = 1, i.e., 
there is no vacancy in the fully occupied 
layer. In the case of df 1, a similar but 
somewhat complicated expression for the total 
free energy G is given. From the equation, 

FIG. 12. Composition dependence of the intralayer 
transition temperature Tc, of the V-S system deter- 
mined from Eq. (37). Temperature is measured by 
D/k in Eq. (37) as the unit. At the transition temp- 
erature Tc,, the CdI,-type structure transforms into 
the NiAs-type. 

we can get the phase transition temperature 
Tc, (CdI,*NiAs) as follows: 

(37) 

where X in VS, Q = E - 34;, E = &,’ - &,, 
and & is the interlayer vacancy-vacancy 
interaction energy between adjacent layers. 
The composition dependence of the Tc, is 
shown in Fig. 12. For example, the sample 
vs 1.3,, does not show a phase transition below 
1200°C. From this fact combined with Eq. 
(37), we have: 

1473°K < Tc, = - 
1.230 (I- && 

Q/k > 4150°K. 

By using rv = 2340°K and CI= 0.30 (& = 
702OK), the interlayer interaction energy (4 
is estimated to be more than 11,872OK or 
23.6 kcal/mole, which is enormously large 
compared with the value of & (= 2340OK). 
The assumption d = 1 adopted in this paper is 
therefore reasonable in the temperature range 
in question. 
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